Lidar Automation

Ethernet based lidar components

Overview:
The Ethernet based components for Lidar automation provide remote control for laser monitoring, timing parameters, detectors and transient recorders. The modules are building blocks for highly integrated detection systems.

Ethernet is a modern, easy to use and very scalable system control technology. It fits perfectly to any PC. You can run your whole system from a laptop with an internet connection.

Laser Power Monitor:
Monitoring every laser shot is the optimum approach to detect laser pulse energy fluctuations, SHG and THG efficiency changes and flashlamp degradation of your laser.
A laser spot reflection can measured using a photodiode or a laser power meter.

specifications:
input: photodiode/power meter
resolution: 10bit
max. rep. rate 100Hz

Timing Control:
Control the laser, the transient recorder and the gating from a single integrated module instead of using an external pulse generator. The module provides all necessary trigger signals: laser flashlamp, laser Q-switch, transient recorder and gating. Use these signals to setup a pretrigger solution where the laser can be either master or slave.

specifications:
Laser lamp out : 5V into 50 Ω, BNC
Lamp out frequency: 0.32 Hz - 50 Hz
Acquisition out : 5V into 50 Ω, BNC
Acquisition out delay: 0.2 µs - 13104 µs
Q-switch out: 5V into 50 Ω, BNC
Q-switch out delay: 0.013 µs - 819 µs
Gate out delay: 0.013 µs - 819 µs
Ethernet based lidar components

PMT/APD Control:
Remote controlling the detectors helps to optimize automated lidars. You can prevent signal saturation (low clouds), react on high or low solar background.
Without manual controls more compact systems can be built.

PMT Remote 8:
Remote control for PMT modules.
No. of PMTs to control: up to 8
high voltage set/read accuracy: +/-1V

APD Remote 4:
Remote control for APD modules.
No. of APDs to control: up to 4
high voltage set/read accuracy: +/-1V
APD cooling control: on/off
Temp. in range monitor

Transient Recorder Control:
Controlling the transient recorder over Ethernet allows to place the acquisition rack as close as possible to the detectors. The PC can be located anywhere in the LAN.
Older systems can be upgraded with this module, the software structure is very similar to make the transition smooth.

Transient recorder control:
No. of transient recorders: up to 16
trigger: global trigger input compatible to DIO-32HS interface

Specifications for all Ethernet modules:

Data Interface:
Ethernet: 10/100 MB/s
Ethernet address: DHCP or manual

Software:
Executables and LabVIEW software source code is supplied. An additional C-based driver is available.

Mechanics:
All Ethernet modules can be mounted into 3 height unit cassettes or on the rear panel of the transient recorder rack.

Environmental conditions:
Operating temperature: 0°C to 30°C (non condens.)
Storage temperature: -40°C to 70°C

International distribution:
Asian Pacific Rim:
Electronics Optics Res., Ltd. 3-fl., Onoda Building, 4-26-19, Koenzi-Minami-Ku Tokyo 166, Japan
phone 03-3314-5699 fax 03-3314-2333 email eor@tkd.att.ne.jp www.eor.jp

USA:
Boston Electronics Corp.
91 Boylson Street
Brookline MA 02445
phone (800)347-5445 fax (617)731-0935
e-mail: boselec@boselec.com
www.boselec.com

United Kingdom:
Photonic Solutions Ltd
40 Captains Road,
Unit A, Edinburgh, EH17 8QF
phone: 0131 664 8122
fax: 0131 664 8144
e-mail: sales@photonicsonolutions.co.uk
www.photonicsonolutions.co.uk

other countries:
LICEL GmbH
Chausseestr. 34/35
D-10115 Berlin
phone +49.30.283 917 37
fax +49.30.283 917 38
e-mail: info@licel.com
www.licel.com